Minimum degrees and codegrees of minimal Ramsey 3-uniform hypergraphs

نویسندگان

  • Dennis Clemens
  • Yury Person
چکیده

A uniform hypergraph H is called k-Ramsey for a hypergraph F , if no matter how one colors the edges of H with k colors, there is always a monochromatic copy of F . We say that H is minimal k-Ramsey for F , if H is k-Ramsey for F but every proper subhypergraph of H is not. Burr, Erdős and Lovasz [S. A. Burr, P. Erdős, and L. Lovász, On graphs of Ramsey type, Ars Combinatoria 1 (1976), no. 1, 167–190] studied various parameters of minimal Ramsey graphs. In this paper we initiate the study of minimum degrees and codegrees of minimal Ramsey 3-uniform hypergraphs. We show that the smallest minimum vertex degree over all minimal kRamsey 3-uniform hypergraphs for K (3) t is exponential in some polynomial in k and t. We also study the smallest possible minimum codegrees over minimal 2-Ramsey 3-uniform hypergraphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matchings and Tilings in Hypergraphs

We consider two extremal problems in hypergraphs. First, given k ≥ 3 and k-partite k-uniform hypergraphs, as a generalization of graph (k = 2) matchings, we determine the partite minimum codegree threshold for matchings with at most one vertex left in each part, thereby answering a problem asked by Rödl and Ruciński. We further improve the partite minimum codegree conditions to sum of all k par...

متن کامل

3-Uniform hypergraphs of bounded degree have linear Ramsey numbers

Chvátal, Rödl, Szemerédi and Trotter [1] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. We prove that the same holds for 3-uniform hypergraphs. The main new tool which we prove and use is an embedding lemma for 3-uniform hypergraphs of bounded maximum degree into suitable 3-uniform ‘pseudo-random’ hypergraphs. keywords: hypergraphs; regularity lemm...

متن کامل

EMBEDDINGS AND RAMSEY NUMBERS OF SPARSE k-UNIFORM HYPERGRAPHS

Chvátal, Rödl, Szemerédi and Trotter [3] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. In [6, 23] the same result was proved for 3-uniform hypergraphs. Here we extend this result to k-uniform hypergraphs for any integer k ≥ 3. As in the 3-uniform case, the main new tool which we prove and use is an embedding lemma for k-uniform hypergraphs of boun...

متن کامل

On the Size-Ramsey Number of Hypergraphs

The size-Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2-edge-coloring of H yields a monochromatic copy of G. Size-Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs. We initiate the study of size-Ramsey numbers for k-uniform hypergraphs. Analogous to the graph case, we cons...

متن کامل

Degrees in Oriented Hypergraphs and Ramsey p-Chromatic Number

The family D(k,m) of graphs having an orientation such that for every vertex v ∈ V (G) either (outdegree) deg(v) ⩽ k or (indegree) deg−(v) ⩽ m have been investigated recently in several papers because of the role D(k,m) plays in the efforts to estimate the maximum directed cut in digraphs and the minimum cover of digraphs by directed cuts. Results concerning the chromatic number of graphs in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2015